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Abstract 
 

The generalized spectrum of dimensions of time series provides additional measures of a signal 

that single dimensional measures fail to offer: (1) when a single dimension is chosen it may not 

discriminate between experimental conditions when other choices might have succeeded. 

Running the spectrum provides a search of all possible dimensional measures. (2) parameters of 

the spectrum provide additional features such as asymptotes, inflections, etc. that may also reveal 

the effects of different experimental conditions. The use of multiple methods of measurement 

and the use of a comprehensive approach to experimental design and analysis is urged. Thus we 

examine an application of the generalized dimensions and graphic EEG presentation (Kulish, 

Sourin, & Sourina, 2006), and a comprehensive program of data analysis (Sprott, 2003). 
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1.  Introduction 
 

Nonlinear measures of the dimensionality, Dq, of time series have usually used methods that 

yield a single dimension, such as the capacity dimension, q = 0), the information dimension, (q = 

1), and the correlation dimension, (q = 2), to name the most familiar. D2, developed by 

Grassberger & Procaccia (1983), is the most tractable and meaningful of these for experimental 

data. But Dq can be generalized for q as a continuous variable over a large range as a generalized 

spectrum of dimensions, also known as multifractals (Grassberger, 1983; Hentschel & Procaccia, 

1983; Paladin & Vulpiani, 1987; Rényi, 1970) and well presented in (Abarbanel, 1996; Kantz & 

Schreiber, 1997; Ott, Sauer, & Yorke, 1994; Sprott, 2003). Despite the potential for improved 

information about the differences in experimental data that the Dq offers there are few 

applications that have been made to real data, but there are a few on the dynamics of heartbeat 

(Amaral et al., 2001), EEG (Kulish, Sourin, & Sourina, 2006), and tropical rainforest (Solé & 



Spectrum of Generalized Dimensions 2 Abraham for CCL 

Manrubia, 1995). My purpose here is not to develop further the methodology, but (a) to try to 

emphasize its potential usefulness in order to get more researchers to explore that potential, and 

(b) to review overall data-analytic strategies in which this method would be imbedded. The 

strategy is mainly that of Sprott (2003) whose comprehensive program is outstanding but, 

unfortunately, seldom used. 

 

I start with an examination of the Kulish et al. paper on EEG and language. They state their goal 

as  “developing new methods of processing data recorded by well-established techniques [that] 

may prove useful while deeper penetrating into the mystery of human consciousness.” Since the 

brain is non-linear and FFT power spectral analyses are linear, non-linear measures should prove 

useful. Their use of the Dq is valuable in that regard. I also include a presentation of their graphic 

methods of evaluating EEG because multiple methods of evaluating signal differences 

complement each other. I comment on ways of increasing the cross-relevance of their 

dimensional and graphic methods in my ‘wish list’, a discussion of research design and analysis 

strategies. 

 

Note that it is reasonable to consider that the linear spectra of frequency decomposition of time 

signals is indeed useful, but that multiple analytic methods might supplement with additional 

information that can be extracted from the signal(s) including nonlinear and graphic measures. 

For example, in R. Abraham & C. Shaw (Dynamics: The Geometry of Behavior), they have a 

figure comparing the representations of various attractors with three images each: the portrait, 

the time series, and the frequency spectrum (Part 2, Fig. 4.5.7; repeated in Abraham, Abraham, 

& Shaw, Fig. II-49. These books also show the relationship to characteristic exponents 

(Liapunov exponents), but not to fractal dimension, the subject of this paper). As Abarbanel 

(1996, p. 69) puts it, “Since chaotic motion produces continuous broadband Fourier spectra, we 

clearly have to replace narrowband Fourier signatures with other characteristics of the system for 

purposes of identification and classification.” Then he mentions fractal dimensions and 

Lyapunov exponents as the two main candidates as classifiers. 

 

2.  Mathematical Analysis 
 

Kulish et al. begin with the Rényi entropy measure, which seemed curious at first since it does 

not use sequential properties of the data, but rather is the probability distribution function of the 

time signal (i.e., the EEG voltages). Buat from it they developed the generalized fractal 

dimension, Dq, the convolution over the probability distributions of order q summed over the 

bins of the EEG voltages and the size of the hypersphere, δV (which is equivalent to r or ε of the 

usual formulations of D since there is a measured dimension, voltage, associated with r). This is 

their equation 6 (Sprott, §13.2.2, eqn. 13.14, p. 338; Kant & Schrieber, §11.3.1 eqn. 11.12, p. 

187; Ott, Sauer, Yorke, §2.2, eqn. 2.2, p. 15; Abarbanel, §5.2, eqn. 5.12, p. 73, Renyi, 1970; 

Grassberger, 1983; Hentschel & Procaccia,1983; Paladin & Vulpiani, 1987.) The resulting Dq as 

a function of q, is sometimes called the fractal spectrum, also, the generalized Renyi entropy, 

generalized fractal dimensions, generalized dimensions, the spectrum of fractional dimensions, 

multifractal spectrum of dimensions, and multifractal.  
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Of the four books I have mentioned, any one of them presents a more than adequate presentation 

of the mathematics involved, but each has strengths that warrant owning all of these books. 

Abarbanel’s (1996) is excellent for data visualization, especially on explaining the box counting 

method with figures for the Hénon attractor (reproduced in Abraham, 1997). Kantz & Scheiber’s 

(1997) is especially good in pointing out (a) the pitfalls when applying the techniques (§6.4), (b) 

when automated algorithmic methods work well, and (c) when the art of looking at the graphics 

of intermediate steps is needed in an analysis. They also caution about the of loss of information 

in trying to characterize a dynamic by reduction to single numbers—e.g., p. 38 on visual 

inspection of data; p. 72 on independence from measurement and analysis parameters. They are 

also good on stressing the use of multiple approaches to data analyses. They have an appendix 

containing some of their numerical routines in both Fortran and C. Ott et al. (1994) have a 

unique organization by with general explanatory chapters each of which is followed by many 

reprints of classic original papers, a must-have reference work from that perspective. Sprott 

(2003) is excellent for (a) clear explanations, (b) completeness, (c) appendices including a huge 

list with summaries of known attractors, (d) historical vignettes on many the authors in the 

history of dynamics, and (e) a web site that helps with exercises and which keeps the book 

constantly updated.  

 

3.  Experimental technique and signal processing. 
 

I was surprised to see EEG of 10-15 mV p/p; sure beats the days when I did EEG from 

indwelling electrodes (theirs was scalp), which might explain why they could be so casual with 

respect to shielding and isolation of the subjects, and with respect to grounding issues (not 

enough information but I assume they had no problem with ground loops). Mine (indwelling, 

cat) were more in the range reported by Babloyantz (1988/1990, see Fig. 2 showing typical 

ranges of EEG voltages) At any rate, their signals looked pretty clean. I was curious about their 

putting cotton balls behind the ears. Could that have been for EOG rather than ECG? A misprint?  

Statistical processing and “the significance test was performed”. Which tests and on what? 
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Their behavioral task consisted of asking the subject a question to which they had to respond 

‘yes’ or ‘no’. Then they performed the Dq on the EEG to each of these responses. The precise 

timing of the analysis period and the response was not given. Presumably, these EEG samples 

were taken during the utterance, although the 5 sec EEG sample is considerably longer than the 

utterance of the answer would take. 

 

4.  Fractal spectra of EEGs. 
 

They state that the Fourier transform does not yield information about amplitude, but it does 

provide amplitude information in a relative sense at least (power per frequency band; when the 

signal is in arbitrary units), and can be true in the absolute sense of the distribution of V
2
/δf as a 

function of f if calibrations are made which reveal the transfer function of the measuring system 

(sans electrode/brain interface in our work (Abraham, F. D. Brown, D., & Gardiner, M. (1968). 

Hard to believe it had never been done before. We did it with a train of rectangular pulses whose 

convolution yielded the whole spectrum with a single signal.) While they accuse the Fourier of 

also not yielding fractionality information, it is just as true that while the fractal dimension is 

sensitive to frequency information, it does not yield any frequency information directly. Is it hard 

to believe that if the Dq discriminated between the responses, the Fourier would also not yield a 

difference if performed with appropriate parametric choices? These are minor points and not 

very consequential considering the important methods that they are developing. 

 

While the EEG voltages may have been large compared to EEGs reported earlier, the opposite is 

true for the fractal dimensions. After Grassberger & Procaccia first reported their algorithms for 

measuring D2 in 1983, there were a spate of articles reporting D2 and attractor reconstructions for 

EEG, mostly with D2s of 4-6 compared to the <2 values reported in Kulish (Başar & bullock, 

1989; Başar, 1990, see Table 2, Introduction) 2. Why might this be? One can only speculate, 

since there were not many details of the analysis procedures given. But perhaps we can get a clue 

from Kantz & Scheriber (1997), §6.3, where they point out that calculating the correlation sum 

and dimension involve attractor reconstruction, which involves the delay imbedding procedure 

(where calculating the delay τ is critical); “A value which “yields a convincing phase portrait 
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should do for the correlation sum as well.”  Also, results should be “invariant under reasonable 

changes to the embedding procedure.” (p. 73.) 

 
“Once the embedding vectors are reconstructed, the estimation of dimension is done in two steps,” 

determining the correlation sum, C(m,ε), where m is the embedding dimension, ε  

(= r of others), the radius of the covering hypersphere) and then “inspect C(m, ε) for signatures of 

self-similarity. If these signatures are convincing enough, we can compute a value for the 

dimension. Both steps require some care in order to avoid wrong or misleading results.” (p. 73.) 

 

“The straightforward estimator, Eqn. (6.1), turns out to be biased toward too small dimensions 

when the pairs entering the sum are not statistically independent. For time series data with nonzero 

autocorrelations, independence cannot be assumed. . . The most important temporal correlations are 

caused by the fact that data close in time are also close in space” [For the EEG in Kulish et al., the 

state space is based on voltage].  “It is more than likely that the majority of dimension estimates 

published for field measurements are seriously too low because they mistake temporal coherence 

for geometrical structure.” (Kantz & Schreiber, p. 73; demonstrated by Theiler, 1986).  

 

The solution involves decimating the time series to eliminate the correlations. Kantz & 

Schreiber’s next section, 6.4, shows how C(ε) as a function of ε and d(ε ) as a function of ε with 

parameter m is examined for linear portions (those signatures of self-similarity). The finite nature 

of the attractor and differing densities of points at different portions of the attractor affect the 

statistical reliability.   

 

Sprott summarizes some 11 steps or procedures for the analysis of time series data (Sprott, 

§13.8; summarized here in §6 below). Many of these procedures are not mentioned or utilized or 

are incompletely described in the Kulish paper, so no estimate can be made if their procedures 

satisfy these precautions. Nonetheless, the use of the apectrum of generalized dimensions, Dq, is 

an extremely important contribution. 

 

One might remember that in reconstruction work, a usual criterion for selecting a lag, τ, is to use 

the delay required for the autocorrelation to decay from 1 to 0. 

 

Their main results for one subject are in their Fig.3, and averaged over all subjects, substantially 

identical, are in their Fig. 4. They certainly are well behaved. The curves for “yes” answers are 

higher than for “no” answers, as is D0 (Hausdorff-Besicovitch version). In addition, the range of 

D’s from D-∞ to D+∞ was also greater for “yes” than “no” answers. Following the latter result, 

they state, “Hence, the ‘YES’ spectra are on the average more fractal than the ‘NO’ spectra. This 

implies that the brain is on the average more active while answering ‘YES’ question. In addition, 

it is evident from Fig. 4 that on the average, more unexpected values are present in the ‘YES’ 

signal, whereas the ‘NO’ signal is on the average more predictable and uniform.”  
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The 

conclusion that the spectra are greater for the “yes” answers certainly seems safe, even without 

error boundaries for the curves. The conclusion that the brain is more active is not necessarily 

wrong, but requires some conjecturing to have any meaning. It is consistent with the typical 

results, e.g., the Figure 2 of Babloyantz (1989/1990; see supra) which shows D2 as a function of 

voltage for disease (epilepsy, Creutzfeld-Jakob), sleep (stages 2, 4, and REM), and eyes closed 

and open, with D2s increasing from about 2 to 10 (as voltage ranges decrease). A clue to 

interpreting such a result is given by Babloyantz: “The synchronization between neurons which 

occur in pathologies is reflected by high amplitudes and low dimensions.” (see caption of her 

figure.) That is, it is not necessarily more or less activity, but the coherence of neuronal activity 

that is being broken down into subpopulations of neurons and involved in more information 

processing tasks occurring at any time (also, see Abraham, 1997; Abraham et al., 1973 on 

coherence and brain transactions). Why would “yes” involve such an increase in information 

processing in the brain. While it is impossible to tell from this experiment, or to conjecture with 

any confidence (i.e., regarding the involvement of greater emotion, less security, more 

information to evaluate cognitively), it would be of value to use signal-detection theoretical 

methodology and interrogation of the research participants to try to understand emotional and 

cognitive strategies. 
 
What do we make of the fact that the range of Dq is greater for “yes” than “no”? Probably not 

much. The increase was due to the negative end of the spectra (where q < 0) which is more 

sensitive to the less dense portions of the attractor, which is where the more extreme voltages 

are. Mutlifractals are designed to overcome problems of committing to a particular D due to the 

variability in the density (probability of occupancy) of the attractor. Sprott (2003, p. 338): “The 

limit [of Dq as] q approaches +∞ gives the local dimension in the most densely populated region 
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of the attractor, and the limit q approaches –∞ gives the local dimension in the least densely 

populated region. The former can be calculated more accurately than the latter because there are 

usually many more points in the denser region (which is how it got to be dense!).” 

 
The “yes” signal has more unexpected values; the “no” more predictable. Do we need Dq to tell 

us that? Not only is it obvious from the time signal (EEG), but wouldn’t a simple frequency 

(probability) distribution and/or its statistical moments tell us the same? Doesn’t this result tell us 

as much about D than D does about predictability? Of course the big question is: does signal 

predictability reflect cognitive predictability? This is an interesting question that should be 

amenable to further experimentation. 

 

Kulish et al. comment that the information dimension, D1, higher for “yes” than “no”, is 

unexpected since they should have “equal informational content”. However it is not necessarily 

the case that the cognitive and emotional requirements (nor the brain processes required) for the 

two answers should be the same, and indeed, the fact that the whole spectrum (not just D1), is 

different for the two answers would seem to indicate that to be the case. But with the respect to 

the EEG signal, D1, which equals the limit of the Shannon entropy [Sprott: “the amount of 

information required to specify the state of the system”] divided by log δV as δV approaches 0, 

which as Sprott observes, “describes how fast the information needed to specify a point on the 

attractor increases as r [δV in this paper] decreases.” (Sprott, 203, p. 339.)  
 

Kulish et al. make a further conjecture that “this result [unequal D1s] can be viewed as an 

indirect proof of the fact that the operation of the brain is fuzzy, that is there is an overlap 

between the set in question (“YES”) and its complement (“NO”)”. Very indirect!! Fuzzy?! What 

can this mean? While yes and no may be complementary as far as the language goes, the 

expectation that completely different brain processes might support them is an unlikely 

hypothesis. Suppose the brain was divided into two sets of neurons that only talked to neurons in 

their own set. Might we not have achieved the same result? And why, as they claim, should the 

D1s add up to 2 bits as they claim? [D1,yes = 0.921 bits; D1,no = 0.853 bits; Σ = 1.774 bits, 

whereas, if independent the sum should be 2 bits according to Kulish et al. I am a bit confused as 

I didn’t think the limits defining D, even the information dimension D1 had units or dimension of 

their own, so this argument escapes me; but I am on unsure ground on this.] Babloyantz “eyes 

closed” and eyes open” conditions each had D2s (which must be very close to D1 as the Dq 

curves all have the same shape, and adjacent Dqs are very similar) >2. There likely is an overlap 

in the processing of information in making the binary decision, but it is hard for me to see how it 

follows from the non-additivity of D1s of the EEGs for the two responses. In a final observation 

about the fractal results, Kulish et al. point out that the Dq curves are nearly identical to that for 

the logistic equation (but they don’t specify the parameter of the logistic). 

 

It may be relevant that Sprott shows nearly identical curves for the logistic equation (he specifies 

the logistic equation’s constant for different multifractals and approximates the logistic with an 

asymmetrical Cantor set, (§13.4.2, Fig. 13.11, pp. 342-243) and for a pair of asymmetric Cantor 

sets (§13.3.1, Fig. 13.8, pp.340-341.) [One might note, a la the Kulish argument, that these 

curves do share the same brain, that is the same equation except for control parameters, with the 

sum of D1s in the neighborhood of 1.] 
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Sprott: Figure 13.8, Dq for two different asymmetric Cantor sets.  (Thanks to Sprott for sending 

an electronic copy of this figure.) 

 

The fact that two identical deterministic difference equations deferring only in the choice of their 

parameters yield similar curves whose difference can be specified with but a few parameters 

(amplitude and range of Dq, D0, slope of the tangent at the inflection point at D0) does not imply 

that two real-world processes, such as the cognitive ability to answer ‘yes’ or ‘no’ to questions, 

are generated by either similar or different processes. Nor does it tell you whether even the 

processes are deterministic or stochastic (where the difference equations for the latter would 

have to have a probabilistic component). It does mean that the dimensional magnitude of one is 

greater than the other. If deterministic equations represent similar processes, in what way are 

they fuzzy other than that they shared some components of a process but not others? Because an 

attractor is chaotic or possesses fractal dimension and can be characterized with Shannon entropy 

neither makes nor disproves the probabilistic case. For those who wish to involve stochastic 

resonance, specific theories would have to built on the brain/cognitive processes involved in 

which noise contributes to hill climbing from the basin of one attractor into that of another, and I 

suspect such attempts would likely to be rather simplifications or the several cognitive/emotional 

processes involved. 
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5.  Visualization 
 

This is a really exciting methodology, and its potential use in psychophysical and psychological 

research and medical diagnosis and therapy is vast. I am not current on what other similar 

methodologies might be around, but this one looks sophisticated to me.  

 

In brief, the magnitude of EEG is evaluated at each point on the skull, which can be tracked in 

real time with a visualization by means of ‘blobbies’, partial spherical forms on a mannequin 

head, by means of a graphics computer technology by an award winning distinguished team of 

biomedical engineers. 

 

The “blobby” is defined by equation 12, p. 298: 

 
 

“where a is a scale factor, b is an exponent scale factor and g is a threshold value.” 

 

The index i is over the EEG channels. x,y,z were coordinates in a 3D Cartesian space around 

each electrode position, and I presume when unindexed, some sort of average. The distance of 

the electrode to the reference position being ri. The voltages enter via b, and are thus the factor 

that affects the size of the blobby. More than one blobby can be shown at a time to compare 

different aspects of an experiment and different loci of activity and their magnitude. The 

threshold g requires a level of EEG activity before a blobby is visualized for any given electrode 

location. A blobby is calculated for a given time position, but this can be advanced for real time 

movies or snapshots for particular time windows, advancing through the 5 sec of the response 

window. 
 
Here is an example of the first and second .77 sec epochs during an experiment, showing 

blobbies superimposed on the head for ‘yes’ and ‘no’ responses, the color difference surviving as 

shades of gray here and in the article. It nicely shows the reduced area of cortical activation (it 

became more so over the ensuing 6 epochs). (Notice the original 256 Hz digitization rates are 

decimated in half.) Interactive computer windows and palettes allow real time changing of both 

viewing and computational parameters. Boolian operations allow additional experimental 

evaluations. 
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From Figure 6, p. 300. 

 

They conclude that EEG activity is greater for ‘yes’ responses, but that “no” responses require 

less mental activity and is more stressful assumed from its lesser cortical involvement but greater 

persistence in the visual cortex. 

 

Despite the sophistication of the visualization methods, I think there are other measurements in 

addition to EEG amplitude including power spectra and co-spectra, and especially EEG 

coherence measures, and most especially, some of the parameters of the generalized fractal 

spectra that could be fed into the visualization procedures that might help with more subtle 

cognitive interpretations. Additionally, I would love to see more complete results for the 

experiment, and think that any conclusions based on such a brief methodological report would be 

very exciting when used in a more extensive and rigorous experimental context. 
 

6.  My wish list. 
 

a) When unusual statistical and geometrical representations are used, whether Dq or 

blobbies, for which the probability distribution functions and their higher moments 

(variance, skewness, kurtosis) may not be estimated, it is often helpful to evaluate their 

reliability and significance with Monte Carlo methods. They would constitute a welcome 

addition to the present study. (Abraham et al., 1973; Abraham, 1997). 

 

b) It is nice to have calibration of EEG signals and their derivative measures demonstrated 

(Abraham, Brown, & Gardiner, 1968). 

 

c) Utilizing as many of Sprott’s 11 steps or procedures for the analysis of time series data as 

possible (quoted or précis from Sprott, 2003  §13,8, pp. 348-349: 
 

i. Make sure the data are free of errors. 

ii. Test for stationarity. 

iii. Explore a variety of plotting the data. 

iv. Determine the correlation time or minimum of the autocorrelation or mutual 

information to optimize the sampling rate. 

v. Check the autocorrelation function or fourier spectra for periodicities. 

vi. Make a time-space plot to be sure there are enough data. 

vii. Use false nearest neighbor or saturation to establish the embedding dimension 

in the determination of D2. 
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viii. If the embedding dimension is low, determine D2. 

ix. If there is a low dimensional attractor, compute Lyapunov exponents, entropy, 

and growth rate of unpredictability. If high, remove noise. 

x. If there is chaos, use surrogate methods for the above tests. 

xi. If there is low dimensional chaos, construct equations and make short-term 

predictions. If high dimensional chaos (more common), “some predictability 

[maybe] is possible, and whose power spectrum and probability distribution 

allow comparison with theoretical models.” 

 
d) Considering the subtlety, multiplicity, and complexity of transactions within the brain, 

and the largely unknown nature of them for the subtleties of cognitive processes, it is not 

surprising that the best of our analytic techniques are frustratingly inadequate at revealing 

those subtleties. I am particularly thinking of the relationships which may be taking place 

between different areas of cortical (and subcortical when indwelling electrodes permit), 

so when blobbies indicated more than one active area, it could prove of interest to see if 

the EEG in those areas would show some covariance/coherence (Abraham, 1997; 

Abraham et al., 1973 for power spectra, but could be done with with bi,j here). And in 

fact, all pair-wise sets of electrode results could be funneled into a discriminant or other 

canonical correlational analysis. And especially, these analyses could be fed into another 

round of blobby movies. 

 

e) When this paper segued to the visualization I thought they were going to visualize Dq, or 

at least D0, D1, or D2, or defining parameters of Dq, so I put that on my wish list also. If 

you put all these together, blobbies for D, voltage, and paired covariance of voltage, 

along with Monte Carlo and surrogate methods, and the rest of Sprott’s steps, then the 

methods so cleverly developed here would more definitely realize their potential. 

 

f) And finally, some refinement of reporting of experimental procedures, such as the 

temporal indication of stimuli and response with the EEG recording would prove a 

benefit. Someone taking advantage of all of these would then be on the threshold of the 

evolution of an exciting experimental program.  

 

The authors are to be congratulated and thanked for developing these tools for the rest of us to 

use. I am certainly appreciative of the opportunity to learn as much as possible from this exercise 

of trying to understand their work, despite my own limitations. I submit it here in hopes that 

others will become interested in this work and that of the other authors cited. 
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