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Abstract 

Basic dynamical concepts relevant to human creativity include those of stability, instability, 
bifurcations, and self-organization.  Here we present the view that most creative bifurcations 
are from chaotic to chaotic attractors, and that such bifurcation are macro-bifurcations 
comprised of a cascade of micro-bifurcations whether in continuous dynamics or network-
style models.  Examples are drawn from the Ueda Explosion for continuous systems and the 
work by Langton; Packard; Mitchell et al., and Kauffman with NK Boolean networks. These 
typically are thus smeared in time and state-space.  We suggest that the misunderstood 
phrase “edge of chaos” could be used for such a liberalized concept. 
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From the Leibniz-Abraham Correspondence  

And for motion and temporal change in complex interactions, my “conatus” and “trace”, which 
you call “vector” and “trajectory”, have developed into attractors and phase portraits, thus 
extending my geometry of motion.ii  
If these are correctly and ingeniously established, this universal writing will be as easy as it is 
common, and will be capable of being read without any dictionary; at the same time, a 
fundamental knowledge of all things will be obtained. The whole of such a writing will be made 
of geometrical figures, as it were, and of a kind of pictures—just as the ancient Egyptians did, 
and the Chinese do today.  Leibniz, 1666, De Arte Combinatoria 

Part I.  Stability, Instability, and Bifurcations 

Supposing you, a friend, or a patient has some behavioral feature or personality 
characteristic which you wish to change. Changing such an undesirable attractor we might 
call a dynamical bifurcation. For us, the most important part of the theory of dynamical 
systems is that of bifurcation, which means a significant change or transformation.  The most 
common types of attractors are static, cyclic, or chaotic. The most familiar types of 
bifurcations are catastrophic (an attractor appears or disappears); subtle (changing from 
one type to another); or plosive (exploding or imploding). We would call persistent 
behavioral patterns stable, whether maladaptive or healthy. To get from a less desirable trait 
to a more desirable one requires that one destabilize the system. We can see this by 
visualizing how dynamics treats such change. One can describe bifurcation properties by 
defining change mathematically or metaphorically, depending the extent to which you wish 
to formalize the system. 
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Figure 1.  An unstable center can be perturbed into a point attractor or point repellor. 
Taken from Abraham & Shaw (2005, Fig. 12.1.8, p. 368.) 

On the left is a dynamical (aka ‘phase’ and ‘attractor-basin’) portrait called a ‘center’. The 
vectorfield of forces at each point in the state space cause the two variables to cycle over 
the same trajectory through the same starting point. The three cycles start at different 
points. Starting at a point nearby to those trajectories neither approach nor move away from 
that trajectory. There is no attractor or repellor in this portrait. This model has been used in 
ecology (prey-predator relationships, Lotka, 1924; Volterra, 1931) and family dynamics (a 
mother’s tension and a son’s aggression, Elkaïm et al. 1987).  The vectorfield and its portrait 
shown here are extremely unstable. Why? Because the competing forces (say between the 
variables of the prey and predator populations, or the tension/aggression within the family) 
are rather equally balanced. Changing the constants amplifying and attenuating those 
variables, changes the vectorfield, as shown by the vectors in the middle pictures. The upper 
panel shows the added vectors pointing toward the center of the center, causing trajectories 
to spiral in to a fixed point attractor, a stable attractor, the portrait at the upper right. If the 
new vectors point away, a point repellor is created. At the bifurcation point for such ordinary 
bifurcations, there is no attractor. To get from one attractor to another requires changing 
one or more constants, with the system losing stability, and passing through the bifurcation 
point, if a new attractor appears.  As the constant is changed further, it becomes more stable 
again.  The phrase ‘far from equilibrium’ means just this, moving away from stability to 
instability and the potentiality for bifurcation. 

Thus as claimed, destabilization is an agent of change. But chaos is not usually a feature 
present at the bifurcation for many classic systems. How can we justify suggesting that it can 
be?  In most human systems, attractors are chaotic, preferably mid-dimensionally, and most 
bifurcations are between topologically different chaotic attractors. We here conjecture that 
with complex chaotic attractors, we can have some chaotic features remain, while others in 
the portrait do, as in the simpler cases, change at their bifurcation point. These could 
participate in the self-organizational capacity of the system to be creative.   
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Figure 2.  Portraits of Ueda’s Explosive Bifurcation, an example of a chaos-to-chaos 
bifurcation.  Taken from Abraham & Shaw (2005, Fig. 21.4.9, p. 609.) 

“Ueda's Chaotic Explosion in 3D (1980). The attractor is in the red area. Outside of it are 
two saddles with homoclinic connections (from the saddle to itself). The chaotic attractor 
in the center is a tangle organized around a saddle. Trajectories from the outer saddles are 
attracted to the center saddle and, along with its own homoclinic connections, form the 
inset to the center saddle. Then the outset of the central saddle makes connections to the 
outer saddles, which are then part of the larger chaotic tangled attractor.” (Abraham & 
Shaw, 2005.).   

You can see why it is called explosive, and see both the former homoclinic, as well as the 
new, heteroclinic tangles of trajectories. We contend that these chaotic elements 
contribute to, or perhaps better, characterize the creative process.  The trajectories within 
the tangles sequentially bifurcate, being micro-biurcations that smear in time and space 
to constitute the macro bifurcation.iii 

Ueda refers to this explosion as a “chaotically transitional process”: 

“Duffing’s equation has not statistical parameters and every solution is uniquely determined 
by the initial condition.  The appearance of statistical properties in the physical phenomena 
in spite of the perfectly deterministic nature of the equation is caused by the existence of 
noise in the real systems as well as in the global structure of the solutions.  A bundle of 
solutions representing the chaotically transitional process appears in certain domains of the 
system parameters.  The details of those stochastic regions have not been discussed as yet.”  
(Ueda, 1980. P. 137 (425 in the Kyoto repository). 
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Whether one focuses on creative geniuses or everyday creativity, creativity depends on 
destabilizing the system. That statement we consider a necessary but not sufficient 
condition for creativity. 

Part II.  “The Edge of Chaos” 

At first we didn’t want to use the phrase ‘edge of chaos’ because we were convinced that 
few, including ourselves, knew what it meant, and that many used it in a very general sense 
without having any explicit notion of its definition.  Even within the enclave at the Santa Fe 
Institute, Langdon, Farmer, Crutchfield, Packard, Hraber, and Kauffman et al. who developed 
the ideas, there were differences in usage.  It deals with the patterns of activity in complex 
adaptive systems (CAS), which are two or more continuous or discrete dynamical systems 
that are locally interactive by means of their influence on each other’s control parameters, 
more especially those called cellular automata (CA). These are discrete spatial systems 
(networks, lattices) with global properties much like a dynamical system.  Most of the initial 
work was done with Boolean NK systems, wherein each of N nodes can be in one of two 
states, and be influenced by K neighbors.  For these simple models, the system evolves 
synchronously in steps, updating the states of all nodes according to transitional logical 
rules.  An example of a very simple system showing the relationship to dynamical system 
representations of variables (nodes), equations (logical rules), time-series representations, 
and trajectory representations in state space are shown in Figure 3.  While such models have 
limited utility, they proved an important phase in developing network models and statistics.  
One of the first developments in statistics for Boolean networks investigated a parameter, λ, 
the proportion of the logical rules that yielded a given number of states (0’s vs 1’s as the 
usual coding for binary states).  Langton (1990) found that as the proportion, λ, approached 
a critical value, λc = 0.5iv, then the more complex the attractors became, going through a 
bifurcation sequence from point, to cyclic, to more random or chaotic as defined by a 
number of traditional information measures.  Doyne Farmer first attached the label “edge of 
chaos” to this middle region near λc. 

In actuality, there can be no such thing as true chaos as is made clear from the finite nature 
of all networks; all trajectories must be cyclic (Mitchell, 2009, p. 285), but some, cycles are 
so long as to be meaningless, but we treat the complex portions as chaos when they display 
certain properties, such as initial sensitivity to conditions, good behavior for the usual 
measures of fractal dimension and Lyapunov exponents when or if computed, and so on.  
“But if the state cycle is too vast, the system will behave in a manner that is essentially 
unpredictable.”  (Kauffman, 1995, location 1056). 

Note the similarity of the discussion of the network transitions to Ueda’s. 
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node 1 = 1 if 2 ^ 3 = 0 

node 2 = 1 if 1 ^ 3 = 1 

node 3 = 1 if 1 v 2 = 1 

 

System Diagram:  Variables (Nodes) 1,2,3 The logical rules determining states at 
step n given the states at step n-1 

 

 

 

 

 

Time series for the three nodes being 
synchronously stepped for 11 steps after arbitrarily 
choosing an initial state from among the eight 
possible at time step 0.  It has a 5-cycle attractor, 
the first two cycles being indicated.  The trajectory 
for this time series starts from the right rear lower 
vertex in the state space shown in the next panel.  
On is gray or 1; off is white or 0. 

All possible trajectories in 3D state 
space.  Right, back, and up represent 
the ‘on’ states for nodes 1, 2, 3.  The 
solid arrows belong to the cyclic 
attractor; the dotted arrows are the 
single step approaches to the periodic 
attractor for the three initial 
conditions not on the attractive cycle. 

Figure 3.  Boolean 3,2 Network   

Since logical rules have no parameters modifying variables, as with the ordinary differential 
equations of ‘continuous ‘ dynamical systems, changing their effect must instead be 
accomplished by changing the logical rules themselves.   

Packard (1998) investigated a statistical property of dispersion, the difference-pattern 
spreading rate γ (somewhat similar to Lyapunov exponents for continuous dynamics), as 
network trajectories evolved, also as a function of λ.  As with Langton’s measures, there was 
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a region, though rather broad, at the mid region near λc which yielded higher λ’s  Mitchell, 
Crutchfield, and Hraber (1994) ran similar simulations and got a narrower range of elevated 
γ near λc.  Because the equavalnce of details of these simulations, such as the genetic 
algorithms used to produce logical rules, procedures for selecting initial conditions for 
simulations, K, etc., Mitchell et al. caution that “more appropriate measures of dynamical 
behavior and computational capability must be formulated, and the notion of the ‘edge of 
chaos’ in CA must also be well defined.” (p. 14).  To complicate matters, she mentions that 
Kauffman (1995), who extensively pioneered the potential application of Boolean NK 
networks to genetic networks, also found these different types of attractors to be a function 
of N and K as control parameters, and also applied the edge-of-chaos terminology to the 
‘completely chaotic’ or complex regime which he considered to be under self-organizational 
control. (Mitchell, 2009, p. 284-6). 

But our complaint is not with the inability to provide such a good definition, but to the 
implication of such a phrase as the edge of chaos that the important bifurcations are from 
simple fixed point or periodic attractors to chaotic ones.  We contend that most bifurcations 
are among differing chaotic regimes, and like the simulations of networks, or the simulations 
of dynamical explosive bifurcations like the Ueda, and that these bifurcations smear things in 
time, perhaps with local micro-bifurcations comprising macro-bifurcations.  These could 
reflect the result of the interaction of local and global activities, suggestive of the sometimes 
controversial claims of Wolfram’s Class IV behavior, a claim recently been made for 
neurobeedback (Bachers, 2012), and which could obviously characterize a host of mental 
and neural domains, to say nothing of other biological, ecological, physical, chemical, and 
social systems.  Boolean networks were extensively investigated as perceptual models by 
Malloy.  (Malloy et al., 2010; Malloy & Jensen, 2008).  

Part III  Self-Organization 

Our use of the term self-organization is taken from that of Ralph Abraham and Shaw (1987) 
and can be characterized as a control parameter being a function of the state of the system.  
That is, for an intentional system, like the human, it means navigating in parameter space to 
change one’s own behavior, thinking, mind, brain, etc.  The system is usually under some 
control by both self and environment including external variables not formalized within the 
state or parameter spaces in a model of the system, as depicted in Figure 4.  For a human, 
there is usually some struggle to achieve a creative chaotic bifurcation, even to get to the 
region near such a bifurcation, and would suggest that the term edge of chaos for the 
individual could represent the struggle to get there.  Hopefully one succeeds in 
accomplishing the bifurcation.  These mean wrestling with the forces of convergence and 
divergence in chaotic attractors, which we now briefly characterize. 



Abraham: Comments Page 7 
 

 

Figure 4.  Small Network.  SS = State Space, CPS = Control-Parameter Space.  Adapted from 
Abraham & Abraham, 2010.]  

You can see two state spaces, each with three variables (could be more or less) and three 
control parameters (constants) each, and also inputs from each other’s state spaces and 
from the environment. One can have systems with many more nodes.  Here self-
organization is expressed by the arrows from SS-1 to CPS-1, and SS-2 to CPS-1 and CPS-2 

 

Part IV. Chaos Results from Combining Convergence and Divergence. 

We review these properties of chaos that seem most relevant to creativity by examining a 
very simple chaotic attractor.  

“The Rössler attractor exists in a three-dimensional state space and is organized around two 
saddles. The outset (of index 2 on the x-y plane) of one saddle (red dot of the left image) 
consists of trajectories that diverge from each other as they spiral outward counterclockwise. 
The second saddle point (not shown), upper right away from the attractive thick band of the 
attractor, pulls the trajectories up and turns them back toward the band. Figure 11 shows 
that the region occupied by a set of trajectories has expanded after one trip around the 
attractor. (Abraham & Abraham, 2010, p. 15.) 

 

λ 
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“The rate or strength of divergence within and convergence to the attractor are given by its 
Lyapunov Exponents (characteristic exponents and multipliers), one for each dimension, the 
set of three (one for each dimension in the state space) comprising the Lyapunov Spectrum. 
The largest positive exponent is a measure of divergence between two trajectories for the 
dimension displaying the greatest divergence.” (Abraham & Abraham, 2010, p. 18.) 

The negative must win or there is no attractor. The greater the divergence, the more the 
attractor becomes complex, more chaotic.  Its fractal dimension, another measure of its 
complexity, will also increase. 

 

 

 

Figure 5.  Rössler’s Chaotic Attractor, showing divergence.  Image from Abraham & 
Abraham (2010, p. 16). 

The thick attractive surface shows how a bundle of trajectories occupies more real estate 
after traveling around the attractor once, due to divergence. Convergence brings trajectories 
from a distance away from the surface toward the surface of the attractor.  For this 
attractor, the vectors of the forces are organized around two saddles, not shown, one near 
the center of the bottom of the attractor, the other outside to the upper right.  Lyapunov 
exponents express the amount of convergence or divergence there is for each of the 
dimensions of the attractor.  (Letellier & Rössler, 2006). 

In discussing Guilford’s (1953) psychometric evaluation of intelligence as requiring 
convergent thinking (heading for the attractor of the most appropriate solution to a problem 
or desirable condition), and creativity as requiring divergent thinking (generating multiple 
solutions), it was conjectured that, 

“. . . there is a mixture of divergent and convergent thinking required for creative cognition, 
and that there is a range of optimal dimensionality to the chaotic nature of this process, in 
the mid-dimensional range.” (Abraham, 1996, p. 385.) 
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We could update that on the basis of the edge-of-chaos parameters and the Ueda type 
explosive bifurcations, noting that if one is moving along a parameter, more and more 
possibilities are generated, and one sorts through them, dropping some, generating new 
ones, until there is some satisfaction that some class of solutions or ideas achieves greater 
stability at the expense of others. 

Conclusion 

The exploration of concepts from complexity theory is expanding rapidly, and the attempts 
to develop useful models, research, and technology usually lags behind the development of 
ever newer generations of our conceptual tools, as does our ability to comprehend them.  
Whether our conjectures of the potential usefulness of these basic concepts discussed 
herein prove of any value in understanding the world we live in remains to be seen.  We 
have offered no explicit models of creativity, and have merely suggested a few dynamical 
and network concepts that could be brought to bear on investigating various aspects of 
creativity.  For a more thorough examination of complexity concepts and their philosophic 
implications, see Richardson (2010).  Meanwhile, we look forward seeing the development 
of a better understanding of the creative process, so well expressed in Richards (2007).  We 
have focused on the region of instability for complex creative chaotic bifurcations that are 
smeared in time and distance in state space to which one might stretch the already 
liberalized phrase, “the edge of chaos”. 

 

Dedication 

We dedicate this paper to the creative and imaginative pioneers of dynamical thinking in the 
Winter Chaos Conference and the Blueberry Brain Institute, and our students and colleagues 
at Silliman University and Saybrook.  You will find some of them at: www.blueberry-brain.org 
and impleximundi.com/tiki-index.php 

 

References 

Abraham, F.D. (1996).  The dynamics of creativity and the courage to be. In W. Sulis & A. 
Combs (eds.), Nonliner dynamics in human behavior. Singapore: World Scientific. 

Abraham, F.D., & Abraham, R.H. (2010). A very very brief visual introduction to the theory of 
dynamical systems.  http://www.blueberry-
brain.org/dynamics/A%20Very%20Very%20Brief%20VisIntroTDS.pdf 

Abraham, R.H., & Shaw, C.D. (1987).  Dynamics a visual introduction.  In F.E. Yates (Ed.), Self-
organizing systems.  New York: Plenum. 

Abraham, R.H., & Shaw, C.D. (1982-2005). Dynamics: The geometry of behavior, Part I: 
Periodic Behavior. Santa Cruz: Aerial Press. Parts II, Chaotic Behavior, 1984, III, Global 
Behavior, 1985, & IV, Bifurcation Behavior, 1988, followed. All four volumes were 

http://www.blueberry-brain.org/
http://impleximundi.com/tiki-index.php
http://www.blueberry-brain.org/dynamics/A%20Very%20Very%20Brief%20VisIntroTDS.pdf
http://www.blueberry-brain.org/dynamics/A%20Very%20Very%20Brief%20VisIntroTDS.pdf


Abraham: Comments Page 10 
 

collected into a second edition, Dynamics: The Geometry of Behavior, 1992, Redwood 
City: Addison-Wesley. Now (2005) available also as a CD. 

Bachers, A. (2012).  Neurofeedback elucidates the brain’s NDS activities in Wolfram’s Class 
Four.  Paper presented at the 20th Anniversary Winter Chaos Conference, Montpelier, VT.  
http://impleximundi.com/tiki-read_article.php?articleId=136 

Elkaïm, M., & Goldbetter, Goldbeter, A., & Goldgeter-Merinfeld. E. (1987). Analysis of the 
dynamics of a family system in terms of bifurcations. Journal of social and biological 
structures, 10, 21-36.  

Guilford, J.P. (1953).  Creatiity and its cultivation.  New York: Harper & Row. 

Kanamaru, T.  (2008).  Duffing oscillator.  Scholarpedia, 
http://www.scholarpedia.org/article/Duffing_oscillator 

Kauffman, S.A (1995).  At home in the universe: The search for laws of self-organization and 
complexity. Oxford: Oxford University Press.  [See also 
http://pespmc1.vub.ac.be/BOOLNETW.html]  

Krippner, S., Richards, R., & Abraham, F.D. (submitted).  Creativity and chaos in waking and 
dreaming states. 

Langton, C.G. (1990).Computation at the edge of chaos: Phase transitions and emergent 
computation. Physica D, 42, 12-37. 

Letellier, C., & Rössler, O. (2006.  Scholarpedia 
http://www.scholarpedia.org/article/Rossler_Attractor 

Lotka, A.J. (1924). Elements of physical biology. Reprinted as Elements of mathematical 
biology, 1956, New Youor: Dover. 

 Malloy, T.E., Butner, J., Dickerson , C. & Cooper, J.M. (2010).  Fearless-evolution on Boolean 
landscapes: Boolean phase portraits reveal a new navigation strategy based on fearful 
symmetry. Emergence: Complexity & Organization, accepted for publication in issue 
12(3). 

Malloy, T.E., & Jensen, G.C. (2008).  Dynamic constancy as a basis for perceptual hierarchies. 
Nonlinear Dynamics, Psychology, and Life Sciences, 12, 191-203. 

Mitchell, M. (2009).  Complexity: A guided tour. New York: Oxford. 

Mitchell, M., Crutchfield, J.P., & Hraber. (1994).  Dynamics, computation, and the “Edge of 
Chaos”: A reexamination.  In G. Cowan, D. Pines, and D. Melzner (editors), Complexity: 
Metaphors, models, and reality. Santa Fe Institute Stuides in the Sciences of Complexity, 
Proceedings, 19.  Reading: Addison-Wesley. Parked at 
http://web.cecs.pdx.edu/~mm/dyn-comp-edge.pdf  

Packard, N.H. (1988).  Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J. Mandell, 
and M. F. Shlesinger (eds.), Dynamic patterns in complex systems, 293-301, Singapore: 
World Scientific. 

http://impleximundi.com/tiki-read_article.php?articleId=136
http://www.scholarpedia.org/article/Duffing_oscillator
http://www.amazon.com/exec/obidos/ISBN=0195111303/principiacyberneA/
http://www.amazon.com/exec/obidos/ISBN=0195111303/principiacyberneA/
http://pespmc1.vub.ac.be/BOOLNETW.html
http://www.scholarpedia.org/article/Rossler_Attractor
http://web.cecs.pdx.edu/~mm/dyn-comp-edge.pdf


Abraham: Comments Page 11 
 

Richards, R. (Ed.). (2007). Everyday creativity and new views of human nature. Washington 
DC: American Psychological Association.  

Richardson, K.A. (2010).  Thinking about complexity: Grasping the continuum through 
criticism and pluralism. Litchfield Park: Emergent Publications. ISBN: 978-0-9842164-5-1 

Ueda, Y. (1980).  Explosion of strange attractors exhibited by Duffing’s equation. Nonlinear 
Dynamics, R.H.G. Helleman (ed.), pp. 422-434 from Introduction, p. 425. New York: New 
York Academy of Sciences.  http://repository.kulib.kyoto-
u.ac.jp/dspace/bitstream/2433/71101/4/Ueda_05.pdf 

Volterra, V. (1931).  Leçons sur la théorie mathématique de la lutte pour la vie. Paris: 
Gauthier-Villars. 

Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D, 10, 1-35, 

1984. 

End notes 
                                                      
i
 Comments elaborating the some terms and concepts used in Krippner, Richards, & Abraham (submitted) 
Creativity and Chaos in Waking and Dreaming States. 
ii
 From Leibniz’s address to the founding meeting of the Society for Chaos Theory in Psychology, Saybrook 

Institute, 1991: printed as The Leibniz-Abraham Correspondence in F.D. Abraham & A.R. Gilgen (Eds.) (1995), 
Chaos Theory in Psychology.  The publisher was kind enough to send complimentary copies to Leibniz, c/o 
Abraham, who still treasures it. 
iii
 Thanks to Ralph Abraham for confirming this interpretation of his and Shaw’s diagram of Figure 2.  See also 

Ueda (1980), and for some nice movies of the Duffing forced oscillator, including both trajectories and Poincaré 
sections, see Kanamaru (2008). 
iv
 For the general case of k possible states at each node, λc = (1– 1/k) 
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