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Part I.  Stability, Instability, and Bifurcations 

Supposing you or a patient has some behavioral feature or personality characteristic which 
you wish to change. Changing such an undesirable attractor we might call a dynamical 
bifurcation. For me, the most important part of the theory of dynamical systems is that of 
bifurcation, which means a significant change or transformation.  The most common types of 
attractors are static, cyclic, or chaotic. The most familiar types of bifurcations are 
catastrophic (an attractor appears or disappears); subtle (changing from one type to 
another); or plosive (exploding or imploding). We would call persistent behavioral patterns 
stable, whether maladaptive or healthy. To get from an unhealthy trait to a healthy one 
requires that one destabilize the system. We can see this by visualizing how dynamics treats 
such change. One can describe bifurcation properties defining change mathematically or 
metaphorically, depending the extent to which you wish to formalize the system. 

 

Figure 1.  An unstable center can be perturbed into a point attractor or point repellor. 
Taken from Abraham & Shaw (2005, Fig. 12.1.8, p. 368.) 

On the left is a dynamical (aka ‘phase’ and ‘attractor-basin’) portrait called a ‘center’. The 
vectorfield of forces at each point in the state space cause the two variables to cycle over 
the same trajectory through the same starting point. The three cycles start at different 
points. Starting at a point nearby to those trajectories neither approach nor move away from 
that trajectory. There is no attractor in this portrait. This model has been used in ecology 
(prey-predator relationships, Lotka, 1924; Volterra, 1931) and family dynamics (a mother’s 
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tension and a son’s aggression, Elkaïm et al. 1987).  The vectorfield and its portrait shown 
here are extremely unstable. Why? Because the competing forces (say between the 
variables of the prey and predator populations, or the tension/aggression within the family) 
are rather equally balanced. Changing the constants amplifying and attenuating those 
variables, changes the vectorfield, as shown by the vectors in the middle pictures. The upper 
panel shows the added vectors pointing toward the center of the center, causing trajectories 
to spiral in to a fixed point attractor, a stable attractor, the portrait at the upper right. If the 
new vectors point away, a point repellor is created. At the bifurcation point for such ordinary 
bifurcations, there is no attractor. To get from one attractor to another requires changing 
one or more constants, with the system losing stability, and passing through the bifurcation 
point, if a new attractor appears, as the constant is changed further, it becomes more stable 
again.  The phrase ‘far from equilibrium’ means just this, moving away from stability to 
instability, and the equilibrium of the effect of changes in the constants of the system. 

Thus as claimed, destabilization is an agent of change. But chaos is not usually a feature 
present at the bifurcation. How can we justify suggesting that it can be. In most human 
systems, attractors are chaotic, preferably mid-dimensionally, and most bifurcations are 
between topologically different chaotic attractors. We here conjecture that with complex 
chaotic attractors, we can have some chaotic features remain, while others in the portrait 
do, as in the simpler cases, disappear at the bifurcation point. These could participate in the 
self-organizational capacity of the system to be creative, that is, change. Self-organization 
involves, especially in intentional systems, navigation in parameter space rather than the 
state space, but is a function of where the system is in the state space. 

 

Figure 2.  Portraits of Ueda’s Explosive Bifurcation.  Taken from Abraham & Shaw (2005, Fig. 
21.4.9, p. 609.) 
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“Ueda's Chaotic Explosion in 3D (1980). The attractor is in the red area. Outside of it are 
two saddles with homoclinic connections (from the saddle to itself). The chaotic attractor 
in the center is a tangle organized around a saddle. Trajectories from the outer saddles are 
attracted to the center saddle and, along with its own homoclinic connections, form the 
inset to the center saddle. Then the outset of the central saddle makes connections to the 
outer saddles, which are then part of the larger chaotic tangled attractor.” (Abraham & 
Shaw, ibid.).   

You can see why it is called explosive, and see both the former homoclinic, as well as the 
new, heteroclinic tangles of trajectories. We contend that these chaotic elements 
contribute to the creative process. 

Whether one focuses on creative geniuses or everyday creativity, creativity depends on 
destabilizing the system. That statement represents, of course, a necessary but not sufficient 
condition for creativity. 

Part II.  “The Edge of Chaos” 

At first I didn’t want to use the phrase ‘edge of chaos’ because I was convinced that few, 
including myself, knew what it meant, and that many used it in a very general sense without 
having any explicit notion of what it meant, outside of the enclave at the Santa Fe Institute, 
Langdon, Farmer, Crutchfield, Packard, Hraber, and Kauffman et al. who developed the 
ideas. It deals with the patterns of activity in complex adaptive systems (CAS), which are two 
or more continuous or discrete dynamical systems that are locally interactive by means of 
their influence on each other’s control parameters, more especially those called cellular 
automata. These are discrete spatial systems (networks, lattices) with global properties 
much like a dynamical system. 
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Figure 3.  Small Network.  SS = State Space, CPS = Control-Parameter Space.  Adapted from 
Abraham & Abraham, 2010.]  

You can see two state spaces, each with three variables (could be more or less) and three 
control parameters (constants) each, and also inputs from each other’s state spaces and 
from the environment. One can have systems with many more nodes. 

One such special type of CAS Kauffman called Random Boolean Networks which were 
discrete (progresses by steps) and all variables were binary.  
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Figure 4.  Kauffman’s KN Boolean network.  Taken from Mitchell (2009). 

At the left is the initial condition of the network in which each node can take on one of two 
states (e.g., on or off, 0 or 1, etc.), and a set of rules how each node changes when 
progressing to the next step. The pattern of black and white (e.g., on or off, 0 or 1, etc.) 
nodes change as the system continues through successive steps. Similar networks of cellular 
automata can have more than two states at each node, and different patterns of inputs from 
neighbors and rule tables for change at successive steps. The patterns that evolve can take 
on properties similar to those of dynamical systems, that is, approach static, cyclic, and 
chaotic attractors, but with such complex dynamics the issue of bifurcation becomes more 
complicated. Different parameters of the system can affect the evolution of patterns, and 
can thus produce bifurcation sequences. (See also Malloy et al., 2010.) 
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Figure 5. Packard’s classic ‘Edge of Chaos’ experiment, 1988 which shows the results of 
many runs of simulating such a network.  
Legend: γ is the difference-pattern-spreading rate as system evolves, analogous to the 
measure of divergence in a chaotic dynamical system. λ is the proportion of a specified state 
nodes can take as specified by the rules of change from step to step. 
Adapted by Mitchell et al. (1994) from an experiment by Packard (1988). 

Packard’s network was more complex in having inputs from more neighbors. He measured 
the diffusion rate λ throughout the system while it evolves as a function a parameter λ that 
represented the proportion of an arbitrary (named ‘quiescent’) state in the output of the 
rule table for the changes of each node at all steps. Thus λ is similar to the Lyapunov 
exponent, which is a measure of divergence in a chaotic attractor in dynamical systems, a 
major determinant or measure of its complexity. When λ is low, that would be a fixed point 
or cyclic attractor, when higher, chaotic. There are two critical regions of γ, one where the 
curve is rising, one where it falls rapidly. The first gives rise to the term ‘edge of chaos’. 
(Originally it seemed as if some of the authors took chaos to mean so high dimensionally it 
was random.) 

There are four things relevant to us here. (1) This is a region, not a critical bifurcation point 
as in the classic picture of dynamical systems. Chaos already exists at the onset of this region 
(the base of the ogive), and thus can be contributing to creativity which we conjecture. 
Research on cellular automata is an active area of investigation and is revealing many 
complex things happening in these critical regions. (2) The curve is remarkably like the 
inverted-U function found in studies of aesthetics and the perception of complexity, 
suggesting the complexity of cognitive and emotional elements that may be contributing to 
aesthetic and complexity judgments. (3) Normal mental activity could be driven by a multi-
component system. I have previously conjectured a dynamical model in which interactions 
among mental components may weaken, that is, the coupling constants in their differential 

λ 
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equations may be weakening among brain and mental components during dreaming. From 
the cellular-automata view, there could be a loss of inputs to nodes, and thus a weakening of 
influence among nodes, enabling more independent local evolution, a less coherent pattern, 
thus giving it the appearance of random interconnection events in dreaming, but giving 
creativity a better chance to develop in more localized regions of mental space. (4) Boolean 
networks have been applied to other psychological investigations, such as perception 
(Malloy & Jensen, 2008). 

Part III. Chaos Results from Combining Convergence and Divergence. 

We review these properties of Chaos that seem most relevant to creativity by examining an 
overly simple chaotic attractor.  

“The Rössler attractor exists in a three-dimensional state space and is organized around two 
saddles. The outset (of index 2 on the x-y plane) of one saddle (red dot of the left image) 
consists of trajectories that diverge from each other as they spiral outward counterclockwise. 
The second saddle point (not shown), upper right away from the attractive thick band of the 
attractor, pulls the trajectories up and turns them back toward the band. Figure 11 shows 
that the region occupied by a set of trajectories has expanded after one trip around the 
attractor. (Abraham & Abraham, 2010, p. 15.) 

 

“The rate or strength of divergence within and convergence to the attractor are given by its 
Lyapunov Exponents (characteristic exponents and multipliers), one for each dimension, the 
set of three (one for each dimension in the state space) comprising the Lyapunov Spectrum. 
The largest positive exponent is a measure of divergence between two trajectories for the 
dimension displaying the greatest divergence.” (Abraham & Abraham, 2010, p. 18.) 

The negative must win or there is no attractor. The greater the divergence, the more the 
attractor becomes complex, more chaotic: its fractal dimension, another measure of its 
complexity, will also increase. 
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Figure 6.  Rössler’s Chaotic Attractor, showing divergence.  Image from Abraham & 
Abraham (2010, p. 16). 

The thick attractive surface shows how a bundle of trajectories occupies more real estate 
after traveling around the attractor once, due to divergence. Convergence brings trajectories 
from away from the surface into the attractor. 

In discussing Guilford’s psychometric evaluation of intelligence as requiring convergent 
thinking (heading for the attractor of the single appropriate solution to a problem), and 
creativity as requiring divergent thinking (generating multiple solutions), I conjectured that, 

“. . . there is a mixture of divergent and convergent thinking required for creative cognition, 
and that there is a range of optimal dimensionality to the chaotic nature of this process, in 
the mid-dimensional range.” (Abraham, 1996, p. 300.) 

We could update that on the basis of Packard’s result (inverted-U of figure 5), noting that if 
one is moving from left to right in climbing the parametric ladder of number of relevant 
solutions, more and more possibilities are generated, and one remains there sorting through 
them, dropping some, generating new ones, until there is some satisfaction that some class 
of solutions, or solution becomes dominant, and increasing λ, makes the complexity, γ, drop 
off rapidly to the lower dimension of the appropriate solution. 

The Santa Fe brain trust is investigating computational networks, which considering the 
plethora of modeling possibilities, would have to be considered still in their infancy, but very 
promising to a wide range of biological, psychological, and cultural issues. They suggest that 
they may reveal complexities that we can add to our own modeling of psychological activity, 
especially in combining the relationship between dynamics and networks that can save us 
from some of the oversimplifications with which we currently struggle. Replacing the 
exactness of a bifurcation point with the smeared bifurcation region is an example, along 
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with the nature of the underlying psychological processes involved. For a more thorough 
examination of the CA approach and its philosophical implications, see Richardson (2010). 
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