
Chaos and Complexity Letters ISSN: 1556-3995 

Volume 9, Number 2 © 2015 Nova Science Publishers, Inc. 

 

 

 

 

A BEGINNER’S
1
 GUIDE TO THE NATURE  

AND POTENTIALITIES OF DYNAMICAL  

AND NETWORK THEORY 

PART II: A VERY VERY BRIEF COMPARISON  

OF DISCRETE
2
 NETWORKS TO CONTINUOUS 

DYNAMICAL SYSTEMS 
 

 

 

Frederick David Abraham
3
 

 

 

If you want to inspire confidence, give plenty of statistics — it does not matter that 

they should be accurate, or even intelligible, so long as there is enough of them.  

Charles Lutwidge Dodgson, Three Months in a Curatorship, 1886. 

As a model of a complex system becomes more complete, it becomes less understandable. 

John M. Dutton & William H. Starbuck, 

Computer Simulation of Human Behavior, 1971 

ABSTRACT AND INTRODUCTION 

Systems are collections of things that interact over time. I could give many 

examples, but then, so could you, since that includes just about everything in the 

universes. Many theoretical schemes have been used to model and measure system’s 

behaviors. I review and compare the rudiments of just a few here, namely dynamical 

systems (summarized from Part I), Boolean networks (Kauffman), especially cellular 

automata, but saving scale-free networks (Barabási) for Part III. 

                                                        
1
 The author is the beginner, who invites others to share this introductory exploration. I minimize citations to those 

that are my principal sources and serve as a gateway to the vast literature on these subjects. 
2
 ‘Discrete’ here refers to variables that can assume one state at a time from a discrete, usually relatively small set of 

distinct states. 
3  frederick.d.abraham@gmail.com, www.blueberry-brain.org Waterbury Center, VT,   
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1. REVIEW OF SELECTED FEATURES OF CONTINUOUS  

DYNAMICAL SYSTEMS 

Basic representations of dynamical systems are (1) system diagrams; (2) when possible, 

by ordinary differential equations or difference equations for continuous or discrete time 

respectively, (3) time series of the variables involved, generated by integration of the system 

of equations, (4) Geometric portraits summarizing essential features of patterns of a system’s 

behavior, which are of three main types, vectorfields, attractor-basin portraits displaying 

trajectories of variables and their critical features in state space, and bifurcation portraits, 

which are comprised of important bifurcational features as a function of system parameters , 

and (5) various statistics of their nature and behavior.  

 

 

Figure 1. Three Systems (footnotes
4,5

). 

Figure 2 shows the first four of these representations. One does not usually show a 

system diagram for dynamical systems such as the Rössler system, but we deployed it here to 

facilitate comparison of these systems to networks. The parameters used here are the ones 

most typically used. Rössler’s original values are also still in frequent use: a = 0.2,  

b = 0.2, c = 5.7. 

Two of the most common of statistical properties used to characterize the behavior of 

chaotic attractors generated by systems such as Rössler’s are the fractal dimension and the 

Lyapunov characteristic exponent, or rather a vector of them, the Lyapunov spectrum. The 

fractal dimension (Mandelbrot, 1983; Abraham, 1997, 2008) is a measure of the extent to 

which the attractor fills the Cartesian space in which it is embedded. For example, the 

Hausdorff (also called the capacity or box-counting) dimension, for the attractor shown, 

equals 2.01  0.01which means it hardly takes up much space in its 3D home.
6
 Of greater 

interest is the Lyapunov spectrum, λi, i = 1, 2, …n, n being the number of dimensions of the 

                                                        
4  Retrieved from Wikipedia, Double pendulum, 4/2/2011 7:45 AM, Includes applet simulation by Peter 

Lynch.   
5  Made by running Lada Adamic’s modification of a NetLogo library’s preferential-attachment program, 

(p=1). http://ladamic.com/netlearn/NetLogo501/RAndPrefAttachment.html It also was in her Coursera 

course.   
6
 Sprott, 2003, p. 330; also http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension 
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embedding space (one axis per variable). For the Rössler attractor, the global exponents 

(averaged over the whole attractor), λ1 > 0, λ2 = 0, λ3 < 0. The λ1 measures the rate of 

divergence and λ3 measures the rate of convergence to the attractive manifold (globally) or 

from any two points in a basin in state space (locally). The absolute value of |λ3| is much 

greater than that of |λ1| which keeps the manifold thin and occupying so little of the 

embedding space (Sprott, 2003, pp. 118-120
7
). 

 

 

Figure 2. The Rössler System (a = 0.1 b = 0.1 c = 14).
8
 

                                                        
7
 Also at: sprott.physics.wisc.edu/chaos/com 

8 Figure 2: Equations and Attractor from http://en.wikipedia.org/wiki/R%C3%B6ssler_attractor Retrieved 5 

April 2011 (made by Wofl, 2005) . Diagram by me; time series Created by the author using Berkeley 

Madonna 8.3.18 by Robert I. Macey & George F. Oster   
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2. REVIEW OF ELEMENTARY FEATURES OF BOOLEAN NETWORKS
9
 

Boolean networks are discrete networks where the system variables, usually called nodes, 

cells, or agents, are binary variables, that is can assume one of two values, usually represented 

by 0 and 1, but can also be expressed as on-off, black-white, 0 or 3 volts, dominant or 

recessive, true or false, etc. Connections or links can represent a variety of relationships 

between nodes that influence their change in state from step to step in the iteration process. A 

collection of nodes and their connections constitute a network or graph. They are a special 

case of cellular automata which were introduced by Ulam and von Neumann (von Neumann, 

1948/1951, 1949, 1966). These were extensively developed by Kauffman (1969, 1993, 1995) 

and his colleagues to explore genetic, phylogenetic, ontogenetic, and epigenetic issues. 

Basic representations of Boolean networks, similar to those of dynamical systems, 

include (1) system diagrams; (2) logical rules for changing the states of nodes from one step 

in time or sequence to the next instead of the equations used in dynamical systems—in the 

usual and simplest case, all nodes are stepped synchronously; (3) time series; (4) attractor-

basin portraits (Hanson & Crutchfield, 1988) and bifurcation diagrams, and (5) various 

statistics of the nature and behavior of the system. (Figure 3 below illustrates the first four of 

these representations.) 

 

                                                        
9
 These are a species of cellular automata which were introduced by von Neumann (1966). 
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Figure 3. Boolean 3,2 Network. 

Kauffman’s Random Boolean NK networks initially considered that K, the number of 

inputs or in-degree for all N nodes to be the same. This is a major limitation for modelling 

real systems, but a good starting place for studying general properties of system dynamics. 

When testing models, he chose (1) the input connections, (2) the logical rules of the nature of 

the switching from one state to the next for each node as a function of the state of the nodes 

from whence their inputs came, and (3) the initial set of states for the nodes.  

The state space for such a network is N-dimensional, and the number of possible states in 

the state space is 2
N
, or 8 for the three node case, represented as the 8 vertices of the cube 

showing the state space for the example in figure 3. This is not only finite, but dictates that 

the trajectory must become a fixed point or cyclic attractor within 2
N
 steps. Thus, the 

trajectory in figure 3 shows the 5 possible starting states within the attractive cycle which is 
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shown by the solid arrows, and the 3 remaining starting points, each of which take one step to 

enter the cyclic attractor (dotted arrows). Note that the logical rules for a transition step could 

be also stated as a truth table.  

A one-dimensional cellular automaton is the ring lattice, where every node in the ring has 

the same truth table (see figure 4 and table 1 below). Here is the truth table for a ring using 

r = 1 (r is the radius of the neighborhood of each node which is comprised of itself and r 

nodes to each side of it, the nodes having directed inputs to it). In this example the change of 

any node, x, from step n to step n+1 depends on its own state as well as the neighbors within 

the radius. The number of entries or rules in the truth table is 2
(2r+1)

, in this case, 8. One can 

make the outcomes after the step according to the logic rules, the truth table, established 

arbitrarily, randomly, or by some rational procedure, such as a genetic algorithm. Later we 

will see how changing the proportion of 0’s and 1’s in the rule table, λ, for running 

simulations of models to determine dynamical properties of cellular automata. For the ring 

lattice of the table and Figure 4, λ = 0.5. The logic table is applied to every node for this 

model; the possibilities for variations of such models can be appreciated to be vast. 

 

Table 1.  
 

Truth Table for Ring Lattice with r=1 

(node x, step n) 

(x-1,n) (x,n) (x+1,n) (x,n+1) 

1 1 1 1 

1 1 0 0 

1 0 1 0 

1 0 0 1 

0 1 1 1 

0 1 0 1 

0 0 1 0 

0 0 0 0 

 

For the ring lattice shown (figure 4) at step n obeying the logical (truth) table, going from 

step n to step n+1 would render node x=2 as still filled (filled=1; rule from row 6), while node 

x=9 would turn white (white=0; rule from row 2). Try it on some other nodes.  
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Figure 4. A ring lattice (above) 

 

Figure 5. A Moore neighborhood which is comprised of a node and its eight neighbors.  

It would have a truth table of 2
9
 = 512 logical rules. 

3. CHAOS, BIFURCATIONS, AND STABILITY: SIMILARITIES  

OF CONTINUOUS AND DISCRETE SYSTEMS 

3.1. Chaos 

So, what is chaos? How does one get it? For small N and stationary conditions (the 

logical rules do not change), chaos will not show its beautiful face. But wait! Even when non-

stationarity occurs, one simply is switching from one finite cycle to another, and there are 

only a finite number of rule changes possible, thus chaos is a transient complexity, however 

prolonged, within a cyclic attractor of a period so long that has exhausted your patience.  

Mitchell makes the similar point that periodic attractors usually are shorter than the 

maximum possible with discrete networks which implies that longer cycles are possible 

within which chaotic complexity must occur (Mitchell et al. (1993, p. 4). So does Kauffman: 
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“But if the state cycle is too vast, the system will behave in a manner that is essentially 

unpredictable.” (Kauffman 1995, loc. 1056
10

.)  

That sounds like chaos, at least within the limited meaning of unpredictability for chaos 

in continuous dynamical systems. We contend the some complexity within a periodicity holds 

true for continuous dynamical systems as in Boolean systems. It would seem that all chaotic 

attractors are transitional to fixed point or periodic attractors.
11

 What we mean by this is that 

some attractors, if examined within but a portion of their trajectory to the end of a cycle, may 

exhibit complexity. We can describe some of this complexity as due to a mixture of 

divergence and convergence summarized by their Lyapunov exponents, without being 

concerned whether we have exploited time sufficiently to exhibit the cyclic nature of the 

system. Such concessions seem reasonable to model real systems in the time and space 

domains that interest us. This aspect is a similarity between continuous and discrete systems. 

In examining the implications of Boolean networks in the interests of parsimony for 

exploring autocatalytic biochemical networks, Kauffman concludes that they cannot use such 

chaos, and that things “must settle down into small state cycles—a repertoire of stable 

behaviors.” (Kauffman, 1995, loc. 1058.) He further concludes that basins of attraction of 

such small cyclic attractors will trap advantageous autocatalytic networks. We could maintain 

that the reasoning is essentially correct, but that within attractor-basin portraits, chaotic 

attractors of reasonably mid-dimensional complexity could, and more likely would, serve 

similar purposes.  

There was a quantum jump in the exploration of cellular automata and Boolean networks 

when several investigations of network properties began to compare continuous (Crutchfield 

& Young, 1990) and discrete dynamics and computational theory (Langton, 1990; Li et al. 

1990: Mitchell, Crutchfield, & Hraber, 1994; Mitchell, Hraber, & Crutchfield, 1993; Packard, 

1988). While the lower limit of complexity (fixed point and cyclic) and the upper limit 

(completely random) can be described with simple algorithms, equations, and computations, 

in between these extremes, the complexity, when deterministic can be difficult to specify or 

even to visualize.  

So we tend to treat them as probabilistic and summarize their properties with statistical 

parameters, such as fractal dimensions, Lyapunov exponents, mutual information, correlation 

lengths, and so on. The salient features of cellular automata can be revealed without recourse 

to computational theory, even though this has been a focus of interest since their introduction 

by Ulam and von Neumann (1947). 

                                                        
10

 References to Kauffman (1995) specify locations in the Kindle edition. This location is between his Figs. 4.1 and 

4.2 of Chapter 4. My own preference is to call anything more complex than fixed point and relatively short 

periodic attractors, “chaos” or “transient chaos”, with complete randomness considered as an upper limit of 

complexity, that is, chaos of infinite dimension.  
11

 Once, Bruce Stewart, when he was at Brookhaven National Laboratories, showed me his incredible program for 

the Iris computer (of Tron fame and sadly now an ancient relic) that could launch several trajectories for 

dynamical systems, allowing one to watch them evolve as the Cartesian space revolved around on the monitor 

screen. We took a short meal break while five trajectories of a Lorenz system with typical parametric values 

chased themselves around the screen. Upon returning, the screens seemed blank, but Bruce pointed to two 

pixels lit up, fixed points at the loci of two of the three saddles that organize the attractor. Bruce referred to 

these as the result of transitional chaos. Our conjecture here is that all chaos is transitional. Bruce, among other 

things, is a maestro of the Lorenz system. (Thompson & Stewart, 1986). 
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3.2. The “Edge of Chaos” and μ―Bifurcations 

First, a reminder that the “onset of chaos” (Crutchfield & Young, 1990; Feigenbaum, 

1983) is a bifurcation to a chaotic attractor in continuous dynamical systems. Bifurcations 

occur when a system is unstable, which is maximal at the bifurcation point. Stability occurs 

where small changes in the vectorfield (such as may be caused by the parameters or ratios of 

parameters of the equations) make for only small changes in the topology of the system’s 

behaviors, as reflected in their attractor-basin portraits. Stability in discrete networks similarly 

occurs when minor changes in the tables of logical rules of make for small changes in the 

evolution of the networks. Instability occurs in the region in parameter space where small 

parametric changes in the system’s vectorfields for continuous dynamical systems, and small 

parametric changes in the logical rules for discrete networks, make for dramatic topological 

changes in the attractor-basin portraits (bifurcations). 

Many parameters may affect a system’s stability and bifurcations in cellular automata. 

Most of these have centered on such obvious parameters as N, the number of nodes, K, the in-

degree of the nodes, and λ
12

, the proportion of the table of logical rules for the nodes yielding 

a given state, e.g. 0 or 1 for the binary case. Langton (1990) explored this parameter using 

ring lattices. He found bifurcations to chaos at a critical value, λc, of the proportion of the 

rules, λ, and that as λ approached λc the duration of the transient phase until the bifurcation 

became longer. Other measures also showed increasing complexity. Computational 

complexity was thus low, increased with the approach to λc, and then falls off as complexity 

approaches randomness as λ continues to be increased. 

Measures of the complexity of the behavior of networks include the spreading rate of the 

difference pattern, γ, entropy, S, and mutual information, M (Li et al. 1990). The spreading 

rate, γ, compares the difference between trajectories within a neighborhood with similar 

initial segments and evaluates if they become more or less different in the future. Thus, low γ 

indicates fixed point or cyclic attractors, while higher γ indicates chaotic attractors. Most 

studies seem to assume the typical route to chaos progresses from fixed point to cyclic to 

chaotic, and often authors on cellular automata use ‘chaos’ to mean random or nearly random, 

and at other times to designate a complex region between lower complexity and random. This 

complex region between the cyclic and random is sometimes called the ‘edge of chaos’ and 

sometimes ‘chaos’. 

Figure 6 shows γ as a function of λ as λ is systematically varied from rules that all give 

0’s through the midpoint of rules yielding half 0’s and half 1’s to those all producing 1’s 

averaged over several simulations.  

 

 

                                                        
12

 “λ is not necessarily the best parameter. One can improve on λ as a control parameter in a number of ways. For 

instance, Gutowitz (1990) has defined a hierarchy of parameterization schemes in which λ is the simplest 

scheme, mean field theory constitutes the next simplest scheme, and so on. “However, λ suffices to reveal a 

great deal about the overall structural relationships between the various dynamical regimes in CA rule space, 

and it is very useful to get a feel for the ‘lay of the CA landscape’ at this low-resolution level before increasing 

the resolution and surveying finer details. For one thing, λ helps restrict the area of search to a particularly 

promising ‘spot’, which is useful because higher-order parameterizations map CA rule space onto many 

dimensions, whereas λ is a one-dimensional parameter.” Langton, 1990, p. 15. 
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Figure 6. Spreading rates for a large ring network as a function of the proportion λ. It is 

modified from Packard (1988), as figure 2, in Mitchell et al. (1993). Several replications 

were run with new Monte Carlo seeds of the initial conditions, each with equal numbers 

of 0’s and 1’s, using genetic algorithmically generated changes in the rule tables to adjust 

λ. Ring lattices with r = 3, k = 2. 

Measures of the Complexity of Network Trajectories (Li et al., 1990) 

 Spreading rate, γ, describes how trajectories for nodes within a neighborhood 

become increasingly different over time. These can be averaged over the whole 

space, or used to define attractive basins, with local and global properties for each 

attractor. 

 Entropy, S = – Σ pi log (pi) also often designated as H 

 Mutual information, M, measures the correlation, that is, similarity of a series in 

space-time. M = ΣΣpij log (pij/pipj) 

 

Since several runs are averaged here with differing nodes set to equal numbers of 0’s and 

1’s for the initial condition, and different changes in rule tables for a given λ, the question can 

be raised as to whether the transitions were gradual, as the curves in figure 4 are, or abrupt.  

This question is reminiscent of the debate between all-or-none and gradual learning 

between Estes’ stochastic and Hull’s deterministic learning theories of the 1960’s (Abraham, 

1967; Estes, 1960; Voeks, 1954
13

). Langton showed individual transition events were abrupt 

events. Figure 7 shows his figures 7 and 8 for entropy, H, rather than the spreading rate, γ, as 

a function of λ. 

 

 

                                                        
13

 Virginia Voeks once told me, that when she did this work for her PhD thesis at Yale under Hull, the gradualist, 

that she had convinced him that Guthrie’s (with whom she did her Masters at the Washington) all-or-none 

theories were correct, and while he agreed, he claimed it was too late for him to change at that point. 
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From Langton, 1990. 

Figure 7. Superposition of 4 transition events. Note the different values at which the 

transition take place. 

 

Figure 8. Superposition of 50 transition events showing the internal structure of figure 6. 

What I want to suggest is that once the larger abrupt bifurcations occur, then as γ 

increases, the gradual increase in entropy is the result of a rapid sequence, a cascade, of small 

bifurcations. So we are not in an ‘edge of chaos’, but in a cascade of chaos-to-chaos 
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bifurcations. Now recall the Ueda explosion (Abraham & Abraham, 2010, figure 15; Figure 8 

infra) where tangled homoclinic chaotic attractors bifurcate to heteroclinic tangles among 

saddles. Each trajectory in a tangle changes from homoclinic to heteroclinic individually 

within a succession of such changes. These mircro-bifurcations thus occur in cascades, whose 

complexity remains hidden even from Ueda, just as the details are often left out of network 

analyses, although many analyses of networks do examine the evolution of complex trees 

using diagrams of time-series as in figure 3 supra, though much larger and more complex. I 

like to call these cascades of micro-bifurcations, macro-bifurcational processes, or μ-

bifurcations, for both continuous and discrete systems. 

 

Ueda 

“Duffing’s equation has no statistical 

parameters and every solution is uniquely 

determined by the initial condition. The 

appearance of statistical properties in the 

physical phenomena in spite of the perfectly 

deterministic nature of the equation is caused 

by the existence of noise in the real systems as 

well as in the global structure of the solutions. 

A bundle of solutions representing the 

chaotically transitional process appears in 

certain domains of the system’s parameters. 

The details of those stochastic regions have not 

been discussed as yet.” (Ueda, 1980. P. 137 

(425 in the Kyoto repository). 

 

Li, Packard, & Langdon 

 

Complex behavior. . . is characterized by 

long transients and complex space time 

patterns, [and] by a lack of statistical 

convergence, for it is not clear that the 

assumptions needed for computation of 

statistics hold for this class of rules. 

When computation of statistics is 

attempted, entropy is moderate, the 

spreading rate is roughly zero, and the 

mutual information is large. (Li, Packard, 

& Langton, 1990, pp. 5-6.) 

 

4. ALL IN THE FAMILY 

Imagine a family with sufficient dysfunction so as to attempt family therapy, and that 

their network of about 30 members of family and friends over a period of time could have a 

significant impact on their attitudes and relevance to therapeutic analysis and development. 

Some of these people come into and out of their lives such that one would have to model it’s 

evolution as one of preferential attachment and detachment for which I propose, in rough 

outline, a program that might display their dynamics visually in such a way as to assist family 

members and therapist to dramatically highlight changes as they occur and thus be a part of 

the self-organizational nature of the therapeutic process. One could call this a Therapeutic 

Tracker.  

The following network diagram shows nuclear family members, Edith and Archie 

(mother and father), their daughter, Gloria, and her husband Mike, as four nodes. They are 

colorized as to their predominant affective modes, positive (blue), and negative (red). This is 

a directed, weighted graph, and rather than just red vs blue, there would be a rainbow 

colorization gradient going from red to blue so as to allow averaging into coloring for both 

the actors (nodes), and their interactions (connections). Only a few nodes and connections are 

shown here. Let us also assume representation of significant attributes of each actor, that is, 

within each node, as a continuous or discrete dynamical system. The relative strength of these 
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attributes can wax and wane over time, in self-organizational fashion and are represented as 

the values of the control parameters of the systems equations should they exist, or by 

therapeutic rating methods otherwise (see figures 16 & 17 in Beginner’s Guide I, Abraham in 

press). These are shown graphically for Gloria as small satellites. They are not nodes, just 

visualization of parameters within the system for each node. They could vary not only in 

magnitude, but new ones might show up during the course of therapy and some might get 

lopped off.  Remaining nodes are various cast members, the rectangle the therapist. 

 

 
 

So now, let me suggest some of the options for quantification of the components of the 

graph. First the size of the nodes can vary over time. These could be varied according to 

either the total messages arriving, those sent, or both. Second their color could vary either 

continuously or discretely along the rainbow according to the proportions of positive and 

negative affective messages, again arriving, departing, or both summed. The connections 

could vary according to thickness and color, along pretty much the same schemes, but of 

course would only reflect the pair of nodes that they connect. This scheme allows visual 

depiction of the evolution of the topology of the network, its system parameters, and four 

variables (color and size for both nodes and connections reflecting affective quality and 

quantity of messages) and three types of connections, two directed and one undirected. 

In addition to these, if the network contained enough nodes to warrant it, one could run 

the usual statistical measures of networks, such as various aspects of centrality, clustering, 

path length, etc. which characterize a network’s topography at any moment in time (Barabási, 

2002; Easley and Kleinberg, 2010; Abraham, 2013). Given an adequate set of repeated 

measurements during the evolution of a network, could provide a basis of a continuous 

dynamical system analysis, including their usual measures such as fractal dimension which 

could yield additional insights into the family/therapeutic dynamics. For example, strong 

links between hubs within clusters, if they fail, can break down network integrity, while weak 
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links between nodes that are not hubs may make networks more robust due to providing 

redundant connections within the network (Reis et al. 2014). Therapeutic communities may 

be too small to warrant such sophistication, and they could prove counter-productive to the 

humanistic and experiential aspect of the therapy, maybe useful at times for feedback to 

individuals or communities, but might gain some traction as research instruments. 

Thus there seems to be sufficient motivation to explore network analysis to various 

traditional psychotherapeutic modalities. Their usefulness could be extended to research, and 

to having such programs provide a pro-active or participatory role in therapy, such as a 

patient-run version, e.g. as when used following termination of therapist interventions, and 

self-help versions. 

5. EXCURSUS: THE MAP IS NOT THE TERRITORY 

Cellular automata, like continuous dynamical systems theory, have limited domains of 

application for modelling real world processes. Kauffman himself introduces more complex 

networks before settling down to the development of binary networks in Universe (Kauffman, 

1995, Figure 3.5, loc. 815). Perhaps the greatest contribution of the brief flare up of the 

interest in ‘edge-of-chaos’ was to develop the application of such measures as entropy, 

mutual information, and especially the spreading rate to evolving network trajectories. Von 

Neumann’s accomplishment was to develop the concept of self-reproducing automata (Von 

Neumann, 1960; see Mitchell, 2004.) We have pointed to the general concept of cascading 

micro-bifurcations with gradually changing control parameters, whose generic nature we 

hope is better captured with the term μ-bifurcation for the macro-view of the process. 

Going beyond cellular automata to more flexible network modeling strategies involved 

first the concept of random networks introduced first by Rapoport (1957) and Erdös and 

Rényi (1959). Later, the experiments by Milgram (Milgram, 1967; Travers & Milgram, 1969) 

as analyzed by Watts and Strogatz (1998), showed that many networks displayed 

characteristics that deviated from random attachment, showing bias and efficiency in 

communication. Raporport, often overlooked, had also developed analyses of social networks 

(1957). He was also a champion of conflict resolution and cooperation in evolution.  

The next major advance in network theory came from exploration of the World Wide 

Web by Barabási et al. (Barabási, 2002; Barabási & Albert, 1999). They found that networks 

grow not by random addition of nodes and connections, but that growth was a log-log 

function of the popularity existing in prior nodes, a relationship that led to their being called 

‘scale free”. The heart of the analysis of such networks comes from a multitude of statistics 

derived from adjacency matrices of connections among the nodes. These describe the nature 

of clustering, hubs, network size, and so on, which we do not treat here. Generalizations 

include pruning off nodes as well as adding them (Saramäki et al. 2013). Also, the networks 

do not have the rigid structures of cellular automata, and do not require the homogeneity of 

the agents, and the functions which connect them. They are thus more flexible tools for 

modelling. The ability to add nodes and variations means that as more variables are seen to 

interact with the network and thus get added to it, that modelling may come to approach more 

and more closely the real networks to which they are applied. It thus becomes quickly 

possible to develop models that surpass the attempt to understand them any more easily than 
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the real world to which they apply (Dutton & Starbuck, 1971). That is we might as well 

attempt to explain the map from reality.  

 

 

Figure 8. Poincaré explaining the Ueda explosion to a student who was already 

conceiving the μ-bifurcation. Artwork by grandniece, Laura Abrams. 

 
"The programme of research and 

action proposed by the systemic 

approach have a chance to be 

implemented if science is guided by 

goals of enlightenment instead [of] 

appetites of accumulation and power 

acquisition, as it is, for the most part 

today. This possible (but by no means 

guaranteed) byproduct of the 

information revolution could become 

an emergency exit from our past 

predicament." 

(Rapoport (1996), The Systemic 

Approach to Environmental Sociology, 

from M Schwaninger, 

http://www.isss.org/lumrapo.htm) 

 

 
Dedication 

Anatol Rapoport 1911-2007. Polymath, Musician, 

Mathematical Psychologist, General Systems 

Theorist, Humanitarian, Philosopher. 

[From Google image search, 2/1/2014.] 
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The ‘map is not the territory’ is an old epistemological issue (Bell, 1933; Korzybsky, 

1931). We will also not treat this long and fascinating topic here, but merely point out that 

contemporary complexity theory along with its mathematical and technological tools seem to 

approach a limit in which the map and the territory become indistinguishable. Paradoxically 

providing both emergent and submergent properties. 

REFERENCES 

Abraham, F. D. (1967). Incremental and unitary aspects of paired-associate learning and 

retention. Psychological Reports, 20, 281-282. 

Abraham, FD (1997) Nonlinear coherence in multivariate research: Invariants and the 

reconstruction of attractors. Nonlinear Dynamics, Psychology & Life Science, 1, 7-34. 

Abraham, FD (2008) An inquiry/review into the generalized spectrum of dimensions, Dq, and 

its relevance to research. Chaos and Complexity Letters, 4(2), 193-204. 

(https://www.novapublishers.com/catalog/product_info.php?products_id=11496) (Also 

presented at the Winter Chaos Conference of the Blueberry Brain Institute, Puerto Rico, 

2006.) http://www.blueberry-brain.org/dynamics/multifractal%20commentaryCCL% 

20rev2.pdf 

Abraham, FD (2013) Commentaries on Barabasi’s book, Linked. http://www.blueberry-brain. 

org/Barabasi%20Commentaries/Commentaries%20on%20Barabasi's%20Books.htm 

Abraham, FD, (2014) A beginner’s guide to the nature and potentialities of dynamical and 

network theory, part I: A very very brief visual introduction to the theory of dynamical 

systems. Chaos and Complexity Letters, 8(2-3), 1-18.  

Abraham, RH, & Shaw, CD (2008) Dynamics: The geometry of behavior (CD, 4rd edition). 

Aerial Press. And (1992); 2
nd

 Ed., Redwood City: Addison-Wesley. 

Barabási, A-L (2002) Linked. Penguin/Plume. 

Barabási, A-L, & Albert, R (1999) Emergence of scaling in random networks. Science, 286, 

509-512. 

Bell, ET (1933) Numerology: The magic of numbers. Williams & Wilkins. 

Crutchfield, JP and K. Young, K (1990) Computation at the onset of chaos. In W. H. Zurek, 

(.ed), Complexity, entropy, and the physics of information (pp. 223–269). Addison-

Wesley. 

Dodgson, CL (1996) Three months in a curatorship. 

Dutton, JM, & Starbuck, WH (1971) Computer simulation of human behavior. Wiley. 

Easley, D, & Kleinberg, J (2010) Networks, crowds, and markets: Reasoning about a highly 

connected world. Cambridge. 

Erdős, P, & Rényi, A (1959) "On Random Graphs I". Publ. Math. Debrecen, 6, 290–297. 

Estes, WK (1960) Learning and the new “mental chemistry”. Psychological Review, 67, 207-

223. 

Feigenbaum, MJ (1983) Universal behavior in nonlinear systems. Physica D, 7, 16. 

Gregson, RAM (1995) Cascades and fields in perceptual psychophysics. World Scientific. 

Gutowitz, HA (1990) A hierarchical classification of cellular automata. In HA Gutowitz (ed.), 

Proceedings of the 1989 Cellular Automata Workshop. North-Holland. 

Hanson, JE and Crutchfield, JP (1992) The attractor-basin portrait of a cellular automaton. 

Journal of Statistical Physics, 66(5/6), 1415-1462. 

http://www.blueberry-brain/


A Beginner’s
1
 Guide to the Nature and Potentialities of Dynamical … 17 

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic 

nets. Journal of Theoretical Biology, 22, 437-467. 

Kauffman, S. A. (1993). Origins of Order: Self-Organization and Selection in Evolution. 

Oxford University Press. Technical monograph. ISBN 0-19-507951-5 

Kauffman, S (1995) At Home in the Universe (Kindle edition). Oxford/Amazon. 

Korzybski, A (1931) Paper at the AAAS meeting, New Orleans. 

Langton, CG (1990) Computation at the edge of chaos: Phase transitions and emergent 

computation. Physica D, 42:12-37. 

Li, W, Packard, NH, & Langton, CG (1990) Transition phenomena in cellular automata rule 

space. Physica D, 45, 77-94. 

Mandelbrot, B (1983) The fractal geometry of nature. WH Freeman. 

Malloy, TE, Butner, J, Dickerson, C, & Cooper, JM (2010) Fearless-evolution on Boolean 

landscapes: Boolean phase portraits reveal a new navigation strategy based on fearful 

symmetry. Emergence: Complexity & Organization. 12(3), 65-95. 

Milgram, S (1967) The small-world problem. Psychology Today, 2, 61- 67. 

Mitchell, M. (2009) Complexity. Oxford.  

Mitchell, M, Crutchfield, JP, & Das, R. (1996) Evolving cellular automata to perform 

computations: A review of recent work. In Proceedings of the First International 

conference on Evolutionary Computation and its Applications. (EvCA ’96; pp. 42-55). 

Russian Academy of Sciences. 

Mitchell, M, Crutchfield, JP, & Hraber, PT (1994) Dynamics, computation, and the “Edge of 

Chaos”: A reexamination. In G Cowan, D Pines, & D Melzner (eds.), Complexity: 

metaphors, models, and reality. Santa Fe Institute Studies in the Sciences of Complexity, 

Proceedings, 19. Addison-Wesley. Parked at http://web.cecs.pdx.edu/~mm/dyn-comp-

edge.pdf  

Mitchell, M, Hraber, PT, & Crutchfield, JP (1993) Revisiting the edge of chaos: Evolving 

cellular automata to perform computations. Complex Systems, 7, 89-130. 

Packard NH (1988) Adaptation toward the edge of chaos. In J. A. S. Kelso, AJ Mandell, & 

MF Shlesinger, (eds.), Dynamic patterns in complex systems, pp. 293-301. World 

Scientifc. 

Price, DJ de S (1965) Networks of scientific papers. Science, 149 (3683), 510-515. 

Rapoport, A (1957). Contribution to the theory of random and biased Nets. Bulletin of 

Mathematical Biology, 19, 257-77. http://en.wikipedia.org/wiki/Anatol_Rapoport  

Rapoport, A (1996) The systematic approach to environmental sociology.  

Reis, SDS, Hu, Y, Babino, A, Andrade, JS, Jr, Santiago, C, Sigman, M, & Makse, HA. (2014) 

Avoiding catastrophic failure in correlated networks of networks. Nature Physics, 10, 

762-767. 

Saramäki, J, Leicht, EA, López, E, Roberts, SGB, Reed-Tsochas, F, & Dunbar, RIM (2013) 

Persistence of social signatures in human communication. www.pnas.org/cgi/ 

doi/10.1073/pnas.1308540110 

Shalizi, CR (2010) The edge of chaos. http://cscs.umich.edu/~crshalizi/notebooks/edge-of-

chaos.html 13 December 2010. Retrieved 7 July 2012. 

Sporns, O (2011) Networks of the Brain. MIT. (I bought my copy in 2010!)  

Sprott, JC (2003) Chaos and Time-Series Analysis. Oxford. Sprott.physics.wisc.edu/chaos 

Stam, CJ, & Reijneveld, JC (2007) Graph theoretical analysis of complex networks in the 

brain. Nonlinear Biomedical Physics, 1:3. 



Frederick David Abraham 18 

Thompson, JMT, & Stewart, HB (1986) Nonlinear dynamics and chaos. Wiley.  

Voeks, VW (1954) Acquisition of S-R connections: A test of Hull’s and Guthrie’s theories. 

Journal of Experimental Psychology, 47, 137-147. doi: 10.1037/h0053658 

von Neumann, J (1948/1951) The general and logical theory of automata. Pasadena, CA, 

USA, September 1948. In L.A. Jeffress (ed.), 1951, Cerebral mechanisms in behavior—

The Hixon symposium. Wiley. See http://projecteuclid.org/DPubS/Repository/ 

1.0/Disseminate?view=body&id=pdf_1&handle=euclid.bams/1183522369 

von Neumann, J (1949) Theory and organization of complicated automata. Lectures, U 

Illinois. 

von Neumann, J (1966) Theory of Self-reproducing Automata. (Edited and completed by A 

Burke.) University of Illinois. 

Watts, DJ, & Strogatz, SH (1998) Collective dynamics of ‘small world’ networks. Nature, 

393, 440-442. 

Wolfram, S. (1983) Statistical mechanics of cellular automata, Reviews of Modern Physics, 

55, 601-644. 

Wolfram, S. (ed.), (1986) Theory and Applications of Cellular Automata. World Scientific. 

Wolfram, S. (1984) Universality and complexity in cellular automata. Physica D, 10, 1-35. 

 

 

 

 


